Friday, December 20, 2024

Fab Labs haven't been growing exponentially

The Gershenfelds make the claim that Fab Labs are growing exponentially every 18 months in their 2017 book, Designing Reality (p 11 and pp 100-102) and follow up articles (Digital Fabrication and the Future of Work, 2018)

They actually claim that this new growth is a continuation of Moore’s Law and this fuels their “third digital revolution” rhetoric (book, p.102)

I wish this was true but it’s not.

This rose coloured glasses rhetoric has puzzled me. There remain significant barriers to setting up and maintaining a Fab Lab. The Gershenfelds point out themselves that training Fab Academy alumni to the daunting skill level required follows linear growth.

Here are the figures from their 2018 article:

In this article they speculate that there will be 25,000 Fab Labs by 2026

The Gershenfelds then predict that Fab Lab growth will level off because by 2026 the machines will be so cheap and improved that personal fabrication will replace Fab Labs

The 25,000 Fab Labs prediction corresponds very roughly to 4 doublings over the 10 year period, 2016-2026, ie a doubling every 2.5 years, not 18 months:

(1,300 2,600 5,200 10,400 20,800
or 1300 * 2^4 = 20,800

However, if we go to the Fab Foundation home page, the figure cited there for the number of Fab Labs currently in the world (December 2024) is 2300 +

So the doubling time since 2016 has been 8 years, not 18 months or 2.5 years! Also, as I pointed out in my earlier article, fab transformation hurdles, Fab Lab / Maker Space growth in Australia has stalled

There are plenty of reasons identified in the Gershenfelds book about why Fab Labs haven’t continued to grow exponentially. I think their book contains plenty of realism as well as hype.

But they still maintain their highly optimistic exponential growth rhetoric about digital fabrication. The most recent writing I have found by the three brothers is in 2021 on the "Centre for Bits and Atoms" site, where they say:

Digital fabrication today is at approximately the same stage that digital computation was in the early 1980s, when personal computers gave millions of people access to a capability that had previously been limited to large organizations. PCs were to be followed two decades later by billions of mobile devices and trillions of connected things.

Today we have thousands of fab labs, with the potential for making millions of personal fabricators — small-scale fabrication systems for individual use — and a research road map leading to a future with billions of universal assemblers, and then trillions of self-assembling systems in future decades. As with the exponential improvements of the earlier digital technologies, each of these stages of development promises to be faster, better, and cheaper.
- The Promise of Self-Sufficient Production

In all our arguments and discussions we need to avoid the hype cycle rhetoric.

Nevertheless, community Fab Labs and school based Fab Learn Labs are still great things with enormous potential IMHO. I have outlined some of the reasons why in my earlier article fab transformation hurdles

As the authors say in their original book digital fabrication is both hard and rewarding. This quote sums it up:

"Digital fabrication is hard. It introduces a set of new competencies, including the navigation of continually evolving CAD and CAM software as well as additive and subtractive hardware, embedded computing, and an understanding of the biological and chemical properties of the materials used in fabrication. It also requires design thinking, creativity, collaboration, problem solving and resiliency. These all require knowledge, skills and mindsets that cross very different disciplines and domains and, as a result, are not currently well integrated. We define fab literacy as the social and technical competencies necessary for leveraging digital fabrication technologies to accomplish personally and professional meaningful goals, as well as a commitment to the responsible use of the technologies. We cannot build towards a more self sufficient, interconnected, and sustainable society without widespread fab literacy." (p. 64)
Update 26/12/24:

I sent this to Neil Gershenfeld and he was good enough to respond, as follows:

But at FAB24:

https://fab24.fabevent.org/

I spoke about two reasons why counting labs was no longer relevant:

  • With the proliferation of mini-labs, superlabs, biolabs, fab hubs, ..., a single number no longer applies
  • What matters at this stage is counting the impacts of the programs that have matured -- student outcomes, fab city metrics, businesses incubated, ...

1 comment:

Bill Kerr said...

I e-mailed Neil Gershenfeld a link to this article and received this reply from him (the link to FAB 24 is new to me and I'm checking that out):

"I'm not sure what sources you're working from, but this graph in Designing Reality:

https://ng.cba.mit.edu/show/slide/19.07.MooreLass.html

came from counting additions to the list at:

https://fablabs.io/labs

That's the basis of my historical exponential claim.

But at FAB24:

https://fab24.fabevent.org/

I spoke about two reasons why counting labs was no longer relevant:
• With the proliferation of mini-labs, superlabs, biolabs, fab hubs, ..., a single number no longer applies
• What matters at this stage is counting the impacts of the programs that have matured -- student outcomes, fab city metrics, businesses incubated, ..."